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BIOLOGICAL-CONTROL HERBIVORES MAY INCREASE COMPETITIVE
ABILITY OF THE NOXIOUS WEED CENTAUREA MACULOSA
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Abstract. Biocontrol organisms are generally applied in an attempt to reduce the vigor
of target species and provide native species with an competitive advantage. We tested the
effectiveness of a widely used biocontrol moth, Agapeta zoegana (knapweed root moth)
for two years in the field and found that it had no significant direct effect on the biomass
of Centaurea maculosa (spotted knapweed), one of the most destructive invasive plants in
North America. Instead of releasing a native grass from competition, the reproductive output
of Festuca idahoensis planted with Centaurea was significantly lower when neighboring
Centaurea had been attacked by Agapeta. In a greenhouse experiment, we found that Festuca
planted in pots with Centaurea that had been attacked by Trichoplusia ni (another nonnative
herbivore) had significantly smaller root systems than when they were planted with Cen-
taurea that were protected from herbivory. Root systems of Centaurea that had been at-
tacked by Trichoplusia exuded higher levels of total sugars, but not total phenols. We
hypothesize that moderate herbivory stimulated compensatory growth, induced the pro-
duction of defense chemicals that also had allelopathic effects, or stimulated root exudates
that altered the relationship between Centaurea and Festuca via soil microbes. Our data
suggest that herbivory may increase the negative effects of C. maculosa on neighboring
plants, and that some biocontrols may have indirect negative effects on native species that
are not currently recognized.
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INTRODUCTION

Exotic invasive species pose a serious threat to glob-
al biological diversity by causing rapid, local replace-
ment and eradication of native species (Julien 1987,
Drake et al. 1989). Many promising weapons in the
fight against exotic invaders are biological: predators,
herbivores, and parasites imported from the invasive
species’ place of origin. The use of biocontrols has
been highly successful in some cases, reducing the
spread of invasive plants (Huffaker and Kennett 1959,
Cullen 1973, McEvoy et al. 1991) and providing
‘‘green’’ alternatives for pest management. However,
biocontrols sometimes attack nontarget native species,
compete with native species, and have unwanted com-
munity and ecosystem effects (Howarth 1991, Sim-
berloff and Stiling 1996, Louda et al. 1997). Ecologists
have also expressed alarm about the widespread use of
biocontrols, because biocontrols may exert indirect ef-
fects that are not yet understood (Howarth 1991).

Centaurea maculosa Lam. (Asteraceae, spotted
knapweed) is one of the most economically destructive
exotic invaders in the northwestern United States and
southwestern Canada, and it infests .4 Mha in North
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America (Müller-Schärer and Schroeder 1993). Cen-
taurea invasion is often characterized by dense stands
and virtually complete competitive exclusion of native
species. Although Centaurea species have been highly
successful in North America, they are usually minor
components of their native communities. Biological
control agents were first introduced to control knap-
weed species in 1970, and now 11 species of insects
have been introduced to North America for this purpose
(Müller-Schärer 1991). One of the most promising is
the moth Agapeta zoegana Lin (Tortricidae, knapweed
root moth) the larvae of which are specialist herbivores
on the taproots of a few related Centaurea species
(Müller 1989). We have also observed other nonnative
herbivores consuming Centaurea, including the com-
mon cabbage looper, Trichoplusia ni Hübner (Noctui-
dae).

The use of biocontrols to weaken or eliminate exotic
plants is based on a general, but untested, assumption:
invasive exotics are successful because they have es-
caped intense consumer pressure in their native habitat.
Implicit in this assumption is that direct top-down ef-
fects in these systems are paramount and that indirect
effects are weak. However, in some circumstances, in-
direct effects in natural communities can be stronger
than direct effects (Strauss 1991, Wooton 1994). De-
spite the fundamental importance of understanding how
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biocontrols indirectly affect native plants, examination
of the effects of biocontrols are almost always limited
to the direct effects of the biocontrol on the target weed
and the potential direct effects of the biocontrol on
natives related to the target weed. Here, we studied the
direct effects of Agapeta and Trichoplusia on the target
species C. maculosa and its indirect effects on a non-
target native bunchgrass in common-garden plots and
in greenhouse conditions.

METHODS

Common garden experiment

A field experiment was designed to test the direct
effect of Centaurea on Festuca idahoensis Elmer., the
direct effects of Agapeta on Centaurea, and the indirect
effect of Agapeta on Festuca. This experiment was
carried out at the Diettart Experimental Gardens in Mis-
soula, Montana, USA. Soils at the site are in the Bigarm
Gravelly Loam Series (Loamy-skeletal, mixed, frigid
Typic Haploxerols). Twelve Centaurea and 12 Festuca
idahoensis individuals were planted in each of 20
0.25-m2 plots, with individual plants alternating by spe-
cies in rows and columns of a grid. The locations of
these plots within the sample area were chosen ran-
domly, and each plot was 50 cm from neighboring plots
on all sides. Mesh cages were placed over all 20 plots,
and four Agapeta zoegana moths were introduced into
each of a randomly chosen subset of 10 plots in June
1994 (see Müller-Schärer 1991). Agapeta zoegana is a
native of Eurasia, as is Centaurea, and is now being
used extensively in efforts to control the spread of Cen-
taurea. We acquired Agapeta from the Montana State
University Experiment Station in Corvallis, Montana.
Agapeta moths lay their eggs on the stems and at the
root–shoot interface of Centaurea plants, and the lar-
vae hatch from the eggs in 7–10 d and immediately
burrow into the taproot to feed (Weeden et al. 1997).
In western Europe, the moth is univoltine, and the main
period of feeding occurs during the fall and spring
(Müller et al. 1988). Adult moths emerge from knap-
weed roots in early July–early September. In another
10 plots, Festucas were planted with conspecific com-
petitors, rather than Centaurea. These plots were also
treated with cages, although no moths were introduced.
Herbivory on Festuca by native insects was not con-
trolled, but vertebrate herbivores were excluded from
the experimental garden. In October 1994 we measured
the basal areas of the four central Festuca individuals
in each plot. In September 1995, two growing seasons
after introducing Agapeta, total aboveground biomass
of Centaurea and Festuca was harvested, and the total
number of Festuca florets in each plot were counted.
Bunchgrass meristems accrue laterally; thus, basal di-
ameter is an important measure of vegetative growth.
We did not reapply Agapeta in the second year of the
experiment. In the plots with only Festuca plants, total
floret number was halved. This was done in order to

compare reproductive production between single-spe-
cies plots and plots containing both Centaurea and Fes-
tuca.

To provide the abiotic background for this experi-
ment, and to investigate the potential confounding ef-
fects of soil water availability on treatments, soil mois-
ture was measured using Frequency Domain Reflec-
tometry (Troxler [Triangle Park, North Carolina], Sen-
try 200-AP). To investigate the potential confounding
effects of differences of soil nutrient availability on
treatment effects, ion exchange resin bags were used
to accumulate available nitrogen and phosphorus from
15 April–15 October 1994 (Binckley and Vitousek
1991). Resin bags were buried 15 cm deep near the
center of each of the 30 garden plots. Nitrogen was
measured as 1 mol/L KCl extractable ammonium and
nitrate, and phosphorus was measured as 1 mol/L KCl
extractable phosphorus.

Signs of Agapeta herbivory were observed in the
taproots of numerous plants in each of the treatment
plots at the time of the harvest, but root damage was
not quantified. We observed mature Agapeta moths in
Centaurea foliage 2 yr after establishing the treatments,
suggesting that Agapeta may have dispersed to treat-
ment plots that were intended to be free from herbivory.
However, we observed no sign of larval damage in any
of the Centaurea taproots in the no-herbivory treat-
ments. All ANOVA comparisons were conducted with
fixed-effect models.

Greenhouse experiment

A greenhouse experiment was designed to more care-
fully control the intensity of herbivory and to test the
effects of a leaf herbivore. Twenty-six Centaurea at the
rosette stage were collected in the field, and each was
transplanted into an 8-L pot containing field soil of the
same type used in the common garden experiment and
grown in a naturally lighted greenhouse. On sunny
days, irradiation ranged from 450–1400 mmol·m22·s21,
and temperatures ranged from 24–328C. Festuca were
grown from seed in silica sand for 8 wk, and then one
individual was transplanted into each pot with a Cen-
taurea. Five days after transplanting the Festucas, a
single cabbage looper caterpillar (Trichoplusia ni) was
placed inside a cage (made from transparent acetate
and fine mesh) around the Centaurea–Festuca pairs in
13 pots. These were left until 10–25% of the Centaurea
leaf area was either eaten or was discolored, due to
caterpillar herbivory. We acquired Trichoplusia from
the Cornell University Experiment Station, Geneva,
New York, USA. Trichoplusia is not currently used as
a biocontrol for C. maculosa, but we have observed
Trichoplusia eating Centaurea in the field, and, in ear-
lier experiments, we found it to consume the weed
rapidly. Our primary reasons for using Trichoplusia
were the ease of application and estimating rates of
herbivory, which was not possible with Agapeta. An-
other 13 Centaurea–Festuca pairs were protected from
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FIG. 1. Total number of florets produced in 0.25 m com-
mon-garden plots by Festuca idahoensis without Centaurea
maculosa neighbors (corrected for the number of Festuca),
or with C. maculosa neighbors and either with or without
Agapeta zoegana biocontrols. Error bars show 11 SE. Sig-
nificant differences among treatments are denoted by different
letters (a, b, and c) above the error bars (ANOVA, post-
ANOVA Tukey).

caterpillar herbivory with the same cages used for the
herbivory treatment. Plants were harvested 8 wk after
Trichoplusia were removed. They were then dried at
608C and weighed. During the 8 wk of the experiment,
we did not observe other insects on our test plants;
however, in the eighth week aphids were seen on sev-
eral Centaurea plants, and the experiment was abruptly
terminated.

A single 2 cm diameter polyester capsule (Unibest,
Bozeman, Montana, USA) containing 1100 m2 surface
area of nonionic carbonaceous resin (Ambersorb 563,
Rohm and Haas, Philadelphia, Pennsylvania, USA) was
buried within the root mass of each Centaurea at the
time of transplanting. When the plants were harvested,
capsules were removed and frozen until analysis. Cap-
sules were thawed to room temperature, and exudates
were eluted from the resins using a sequential extrac-
tion of five pore volumes (25 ml) of distilled deionized
water, followed by five pore volumes of 50% redistilled
methanol. The extracts were then analyzed for total
hydrolyzable sugars, total phenols, and ultraviolet
(UV) absorption spectra. Total sugars were determined
by reacting 5 ml of extract with 10 ml of anthrone
reagent, followed by analysis against glucose standards
at 625 nm (Brink et al. 1960). Total phenolic com-
pounds were determined in methanol extracts, as de-
scribed by Price and Butler (1977). Ultraviolet absor-
tion spectra were recorded for all extracts, by perform-
ing a scan of light absorption in the range 350–190
nm.

RESULTS

Plots in all treatments were very similar in soil water
status, ammonium, and nitrate. Soil moisture content
at 15- and 30-cm depths did not vary significantly be-
tween treatments in either year (repeated-measures
ANOVA, Ftreatment3time at 15 cm 5 0.93; df 5 5, 59; P 5
0.606; Ftreatment3time at 30 cm 5 1.04; df 5 5, 59; P 5 0.412).
Likewise, soil nutrients did not vary among treatments.
Available soil nitrate for the Festuca alone, Festuca–
Centaurea, and Festuca–Centaurea–Agapeta treat-
ments, combined, were the following: 5.25 6 1.31 mg/g
resin (mean 6 1 SE) for nitrate, 4.17 6 0.93 mg/g for
ammonium, and 0.49 6 0.13 mg/g for phosphorus.
These values did not vary significantly between treat-
ments during the first year of the study (ANOVA, NO3:
Ftreatment 5 0.149; df 5 2, 29; P 5 0.862; NH4: Ftreatment

5 0.319; df 5 2, 29; P 5 0.729; Phosphous: Ftreatment

5 1.74; df 5 2, 29; P 5 0.194).
In the field, Centaurea severely suppressed Festuca

reproduction (Fig. 1) and aboveground biomass (Fes-
tuca alone, 0.85 6 0.17 g/plant, Festuca with Centau-
rea, 0.33 6 0.11 g/plant; ANOVA, F 5 7.62; df 5 1,
19; P 5 0.012), but Centaurea biomass was not sig-
nificantly affected by exposure to Agapeta herbivory
for two growing seasons (ANOVA, F 5 1.68; df 5 1,
19; P 5 0.21). We conducted a power test (Cohen 1988)
on data for Centaurea’s response to herbivory and

found that it would have taken a sample size of 50 to
have an 80% chance of detecting a biologically real
difference of the observed size. We found no significant
effects of water or soil nutrients as covariates. Festuca
did not benefit from herbivory on Centaurea. In fact,
when Agapeta were allowed to attack Centaurea, the
number of Festuca florets produced per plot decreased
(Fig. 1; ANOVA, including soil moisture in plots as a
covariate, Ftreatment 5 4.43; df 5 1, 19; P 5 0.050). When
neighbor Centaureas were exposed to herbivory, in-
dividual Festuca basal area was 4.49 6 1.45 cm2, com-
pared to 7.25 6 1.25 cm2 when there was no herbivory
on Centaurea, but the difference was not significant
(treatment by plot ANOVA, Ftreatment 5 2.14; P 5
0.149), and there were no significant effects of water
or nutrients as covariates. Festuca biomass was 0.49
6 0.16 g when grown with Centaurea without Agapeta,
and 0.33 6 0.05 g when Agapeta was applied to Cen-
taurea (ANOVA, F 5 1.380; df 5 1, 19; P 5 0.268,
no significant effects of covariates).

We could not accurately measure root biomass in the
field, although it was measured in the greenhouse. In
the greenhouse experiment, Festuca root biomass was
0.33 6 0.04 g when neighboring Centaurea had been
attacked by cabbage loopers, but was 0.41 6 0.04 g
when Centaurea was protected from herbivory (Fig. 2;
ANOVA, initial Festuca size as covariate, Ftreatment 5
6.75; df 5 1, 25; P 5 0.016). Herbivory on Centaurea
did not significantly reduce the shoot or total biomass
of the invasive weed. Centaurea did not flower during
the experiment; therefore, we do not have measure-
ments of reproduction to compare to the field experi-
ments. Total sugars sorbed to nonionic resins and ex-
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FIG. 2. Biomass of Festuca idahoensis with Centaurea
maculosa neighbors that had either been grazed by Tricho-
plusia ni or protected from grazing. Error bars show 11 SE.
The asterisk denotes a significant difference between treat-
ments; ANOVA, P , 0.05, initial size of Festuca was used
as a covariate.

FIG. 3. Total sugars and phenols extracted from resin cap-
sules that had been inserted in Centaurea roots. Error bars
show 11 SE. The asterisk denotes a significant difference
between treatments; ANOVA, P , 0.05.

tracted by water or methanol were significantly greater
in resin capsules under Centaurea that had been at-
tacked by Trichoplusia (Fig. 3; ANOVA, F 5 5.602;
df 5 1, 24; P 5 0.027). Total methanol-extractable
phenols captured on the resin capsules did not differ
among the treatments, but they tended to be greater
under Centaurea that had been exposed to herbivory.
(ANOVA with cosine-transformed data, F 5 0.697; df
5 1, 25; P 5 0.413).

DISCUSSION

Contrary to expectations for biocontrols in general,
in both experiments, Centaurea that had been exposed
to herbivory had greater negative effects on Festuca
than Centaurea that were kept free from herbivory;
and, in the field experiment, Agapeta did not signifi-
cantly decrease Centaurea biomass. Müller-Schärer
(1991) and Steinger and Müller-Schärer (1992) also
found that intermediate levels of Agapeta herbivory
did not reduce shoot biomass, shoot number, or seed
output of C. maculosa; but such levels of herbivory
did reduce plant height and reproductive mass.

The mechanisms for the indirect effect of these her-
bivores on Festuca are unclear; however, there are three
salient hypotheses that are applicable to both experi-
ments. First, Centaurea plants may have grown faster
after they experienced herbivory and, thereby, reduced
resources available for other species. This is supported
by the absence of a difference in total biomass between
Centaurea exposed to herbivory and Centaurea pro-
tected from herbivory in the greenhouse and field ex-
periments. Such herbivory-induced growth is termed
‘‘compensatory growth,’’ and it has been widely re-
ported and debated (Maschinski and Whitham 1989,

Alward and Joern 1993, Belsky et al. 1993). However,
we know of no instance in which a compensatory re-
sponse has increased the competitive ability of a plant.
The intensity of compensatory growth is highly de-
pendent on particular abiotic and biotic conditions
(Maschinski and Whitham 1989, Alward and Joern
1993), and, if compensatory effects are restricted to
certain soil conditions (high-nitrate low-phosphorus
conditions, in our study), it may not be important in
other environments. In Switzerland, Steinger and Müll-
er-Schärer (1992) found that Centaurea maculosa ssp.
rhenana exhibited root compensatory growth when
consumed by Agapeta and Cyphocleonas achates
(which is another root herbivore used as a biocontrol)
and that the compensatory response was affected by
soil nitrogen content and competition from Festuca
pratensis.

A second hypothesis is that biocontrols induced the
production of defensive secondary metabolites that also
functioned as antiplant allelopaths. Others have found
dual antiherbivore–allelopathic roles in inducible plant
metabolites (Lovett and Holt 1995), and increased al-
lelopathic productivity under stress (Tang et al. 1995).
Cnicin, a defensive chemical in Centaurea species that
has been found to deter herbivory (Landau et al. 1994),
is also suspected to have allelopathic properties
(Fletcher and Renney 1963, Muir and Majak 1983, Kel-
sey and Locken 1987). However, cnicin is primarily
restricted to the trichomes on Centaurea leaves, and
herbivory is unlikely to increase its production (R. Kel-
sey, personal communication). Centaurea maculosa
roots have been found to reduce the growth rates of F.
idahoensis roots near them, and this effect was ame-
liorated by activated carbon (Belliveau and Callaway,
unpublished manuscript). Activated carbon is a potent
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adsorbent of charged organic molecules (Cheremisi-
noff and Ellerbusch 1978). Biologically active volatile
polyacteylenes have also been isolated from the roots
of other Centaurea species (Bohlmann et al. 1966) and
the roots of C. maculosa (R. Kelsey, personal com-
munication). We found no significant difference in phe-
nol concentrations in the extracts of resin capsules un-
der plants, with and without herbivory, in the green-
house; but the trend was similar to that of total sugar
concentrations. We do not know if root herbivory in
field conditions also altered root exudation.

Sugars, or compounds exuded from the roots at-
tached to sugars, may have altered microbe–plant and
plant–plant interactions. Sugar release to the rhizo-
sphere of plants, which increased for Centaurea when
grazed by Trichoplusia, is an important and readily
available source of energy for microorganisms (Ocam-
po and Azcon 1985). Sugars in the rhizosphere help
drive a number of important processes, including free-
living N fixation and mineral immobilization and so-
lublization (Tate 1995). Relationships between root ex-
udation of sugars and mycorrhizal infection has been
reported (Ratnayake et al. 1978, Graham et al. 1981,
Same et al. 1983). Differences in root exudate quantity
or composition may also affect mycorrhizal mediation
of the interaction between Centaurea and Festuca. UV-
absorption spectrographs of fescue, knapweed, and
bulk soil resin extracts (T. H. DeLuca, unpublished
data) indicated that a significant portion of carbon de-
tected in the methanol had UV absorbtion spectra sim-
ilar to that of flavonoid compounds. Recently, root fla-
vonoids have been identified as important signals of
microbial response in the rhizosphere at micromolar
and even nanomolar concentrations (Becard et al.
1992). Higher levels of sugars in the exudates of at-
tacked Centaurea may indicate higher levels of exuded
flavonoids, because flavonoids that are released as root
exudates are often glycosylated to increase their sol-
ubility (Markham 1981, Varin 1992) and transport out
of the root. The anthrone reagent used in this study
hydrolyzes complex polysaccharides and glycosides
and reacts with the released monosaccharides; thus,
detection of soluble sugars in these studies may, in part,
have been related to the presence of glycosylated fla-
vonoids. Exudate effects on mycorrhizae have the po-
tential to be important, as our previous research has
shown that Centaurea develops substantial arbuscular
mycorrhizae (AM) infections in the field in inter-
mountain grasslands, and they have large effect on in-
teractions between Centaurea and Festuca idahoensis
(Marler et al. 1999).

The results of our experiments corroborate each oth-
er, but the greenhouse experiment does not provide an
explicit test of the field experiment. We used a gen-
eralist herbivore in the greenhouse to facilitate precise
levels of herbivory; however, Trichoplusia ate leaves,
and herbivory occurred in a short intense bout. In con-
trast, Agapeta ate roots, and over a long period of time.

Second, we could not measure root biomass in the field
nor reproductive output in the greenhouse (plants did
not flower). Therefore, direct comparisons of the ex-
periments are unclear. However, the fact that herbivory
on Centaurea showed significant negative indirect ef-
fects on Festuca, under two very different sets of ex-
perimental conditions, suggests that these general in-
direct effects are robust.

Many invasive plants, such as a number of Centaurea
species, are rapidly replacing native communities, and
some risk in the application of biocontrols may be war-
ranted. Nevertheless, our data suggest that herbivory
by biocontrols can make an already superior competitor
even better, especially if biocontrols do not badly dam-
age or kill the target plant. Thus, evaluation of bio-
controls prior to their use should include some screen-
ing for their indirect effects as has been suggested by
others (Simberloff and Stiling 1996). A fundamental
rationale for using biocontrols to suppress invasive
plants is that, by weakening the invader, natives may
gain a competitive advantage. Our data suggest that
this may not always be the case.
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